各种NLP操作难实现?
|
ngvo 是一个能够为协作式深度学习研究提供完整解决方案的 Tensorflow 框架,尤其关注序列到序列模型。Lingvo 模型由模块化构件组成,这些构件灵活且易于扩展,实验配置集中且可定制。分布式训练和量化推理直接在框架内得到支持,框架内包含大量 utilities、辅助函数和最新研究思想的现有实现。过去两年里,Lingvo 已被数十个研究人员在 20 篇论文中协作使用。本文作为对框架各个部分的介绍,概述了 Lingvo 的基本设计,同时还提供了展示框架能力的高级功能示例。 自然语言处理在过去一年取得了很大进步,但直接关注 NLP 或序列建模的框架还很少。本文介绍了谷歌开源的 Lingvo,它是一种建立在 TensorFlow 上的序列建模框架。该框架重点关注协作实现与共享代码库,能极大提升代码复用与研究迭代速度,NLP 的今年就靠你了~ Lingvo 是世界语(Esperanto)中的一个单词,它表示「语言」的意思。这一命名展示了 Lingvo 框架的根源:它是由 TensorFlow 开发的通用深度学习框架,它重点关注自然语言处理相关的序列建模方法,包括机器翻译、语音识别和语音合成等。
在谷歌内部,Lingvo 框架非常有吸引力,使用它的研究人员越来越多。目前,有数十篇获得 SOTA 结果的论文都通过 Lingvo 框架得到了最优的复现,当然开源后将会有越来越多的新实现。从传统的 RNN 序列模型到目前流行的 Transformer,再到包含变分自编码器模块的前沿模型,Lingvo 支持的序列建模架构非常多。 为了支持研究社区并鼓励复现研究论文,谷歌开源了这项框架。他们表示以后谷歌发布的一些序列建模新研究也会尝试采用 Lingvo 框架,它的便捷性将提升 NLP 研究的速度。 Lingvo 主要支持大量研究团体在一个共享代码库中从事语音和自然语言处理相关问题的研究。它的设计原则如下:
(编辑:平凉站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |




